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Introduction
Interval forecasts are extensively used in Finance and Economics.

Often, practitioners are faced with the task of producing interval
forecasts for multiple time series

i.e Value-at-Risk forecasts for multiple trading desks, M4 Competition.
Berkowitz, Christoffersen, and Pelletier (2011), Makridakis, Spiliotis, and Assimakopoulos (2018)

Most of the backtesting methodology is designed for univariate series
Christoffersen (1998), Engle and Manganelli (2004)

Little work has been done on the evaluation of multiple interval
forecasts. Length has been used, but properties are unclear.
Askanazi, Diebold, Shin, and Schorfheide (2018), Makridakis et al. (2018)
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Introduction

In this work...

We develop a methodology to evaluate multiple interval forecasts

We assume a forecaster has M collections of interval forecasts for a
panel of time series and must provide a ranking.
All forecasts are assumed to have correct coverage for all series

We propose as an optimality criteria to select the method that
minimizes a measure of dependence across cross-sectional violations
Everything equal, forecasters prefers methods that minimize the
probability of simultaneous interval forecast violations.

We develop a data-driven selection procedure and establish its
consistency.

Brownlees and Souza (2020) 2/22



Introduction

Empirical Illustration

We apply the proposed methodology to evaluate common interval
forecasting methods for all S&P 500 components

VaR forecasts: GARCH, TARCH, Factor GARCH and Rolling Window

Our methodology selects the collection generated by the F-GARCH

Financial crisis: 78% reduction in simultaneous hits when compared to
RW and 20% when compared to TARCH.
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Related Literature

1 Absolute evaluation of interval forecasts

Christoffersen (1998), Engle and Manganelli (2004).

2 Relative evaluation of interval forecasts

Askanazi et al. (2018), Winkler (1972), Giacomini and Komunjer (2005), Gneiting and

Raftery (2007).

3 Evaluation of vectors of forecasts

Sinclair, Stekler, and Carnow (2015), Hendry and Martinez (2017).

4 Risk Management

Berkowitz et al. (2011), Escanciano and Olmo (2011), Escanciano and Hualde (2017)
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Methodology

Setup

Let Yt denote a n-dimensional vector of time series observed from
t “ 1, . . . ,T .

An interval forecast for series i at time t with coverage 1´ α is

PIi t “ rPI
L
i t ,PI

U
i t s s.t PpYi t P PIi tq “ 1´ α

There are m “ 1, . . . ,M procedures to construct interval forecasts
with nominal coverage 1´ α and we denote by

Pm “ tPIm i ,tu
n,T
i“1,t“1

the collection of such forecasts generated by method m.

We are interested in ranking the collections Pm for m “ 1, . . . ,M .
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Methodology

Remarks

We do not consider prediction regions with uniform coverage p1´ αq.
Already considered in Christoffersen (1998).

Without loss of generality, we focus on 1-step ahead interval forecasts
rather than h-step ahead forecasts

One may want to combine collections. For simplicity, we do not
consider this.

We assume all intervals are based on the same quantiles for all series
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Methodology

Let Hm it “ 1tYi t R PIm itu be the hit variable for series i at time t,
generated by method m.

It is standard to evaluate interval forecasts by the properties of the
univariate series of hits.

We assume methods have correct (unc.) coverage i.e. ErHm its “ α

Our evaluation methodology is based on the cross-sectional properties
of Ht “ pHm 1t , . . . ,Hmntq

1

We assume Ht is covariance stationary.
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Methodology

Efficiency Criteria

We propose to rank collections according to their dependence properties.

Definition Efficiency

Assume we have m “ 1, . . . ,M collections of prediction intervals. Let

τ̄m “
2

npn ´ 1q

n
ÿ

i“1

i´1
ÿ

j“1

PpHm it X Hm jtq .

Then we say a collection m˚ is efficient if

m˚ “ arg min
mPM

ˇ

ˇτ̄m ´ α
2
ˇ

ˇ .

Reminiscent to mixing, mutual information, KL divergences, etc...
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Remarks on Criteria

Univariate Setting: Length vs Coverage

1 Shorter intervals are presumably conditioning on more valuable
information sets. Granger, White, and Kamstra (1989)

Multivariate: Length vs Coverage vs Dependence

1 Given correct unconditional coverage, we assume forecasters prefer
collections of intervals where the dependence between violations is
minimized.

2 Other optimality criteria (or combinations of such) may be chosen.

3 Askanazi et al. (2018): Lengths are not directly comparable across
series with different scales.

Correct (Unc.) Coverage is empirically hard to reject. Berkowitz (2001)
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Example

Example

Consider a simple linear model:

Yi t “ Xt ` Zi t Xt „ Np0, 1q,Zi t „ Np0, 1q

and the following PIs:

PI1 it “

”?
2Φ´1

´α

2

¯

,
?

2Φ´1
´

1´
α

2

¯ı

PI2 it “

”

Xt ` Φ´1
´α

2

¯

,Xt ` Φ´1
´

1´
α

2

¯ı

For i “ 1, . . . , n, t “ 1, . . . ,T and where Φ is the standard normal cdf.
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Example

Both methods provide correct unconditional coverage

Simultaneous hits are more likely under method 1 than method 2

In this example we know that Xt drives the factor structure in the
panel, so we can easily test for optimality wrt Xt

If we dont know what drives the panel, we have a model selection
issue.
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Evaluation

The following lemma makes our definition of efficiency operational.

Lemma

Let

Hm t “
1

n

n
ÿ

i“1

Hm it and τ̄m “
2

npn ´ 1q

n
ÿ

i“1

i´1
ÿ

j“1

PpHm it X Hm jtq

Then, under the previously stated assumptions and assuming additionally
τm ě α2 for all m “ 1, . . . ,M, we have that

arg min
mPM

E
“

pHm t ´ αq
2
‰

“ arg min
mPM

ˇ

ˇτ̄m ´ α
2
ˇ

ˇ .
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Comments

We restrict τm to be at least that obtained under cross-sectional
independence.

Empirically justified in Finance and Economics.

We note that τm ě α2 ´
αp1´αq
n´1

, so the assumption τm ě α2 is not so
restrictive, for n large.
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Empirical Evaluation

We evaluate collections by the empirical analog of E
“

pHm t ´ αq
2
‰

:

Lm “
1

T

T
ÿ

t“1

˜

1

n

N
ÿ

i“1

Hm it ´ α

¸2

We assume Ht “ pHm 1t , . . . ,Hmntq
1 is strong mixing with coefficient

ψ that satisfies:
ψplq ď exp p´Alβq

for some A ą 0 and β ą 1.
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Empirical Evaluation

Lemma

Let m˚ be the efficient collection and pm˚ “ arg minmPM Lm Then,

P p pm˚ “ m˚q ě 1´ C exp

"

logpMq ´
pn ´ 1q

n
pτm1 ´ τm˚qT

β
β`1

*

where m1 “ arg minmPMzm˚ ErpHm t ´ αq
2s and for a constant C .

(Rate) Stronger time series dependence leads to slower selection

(# of Collections) M can grow as a power of T.

Brownlees and Souza (2020) 15/22



Empirical Application

Empirical Application



Empirical Application

Empirical Application

We apply our framework to evaluate Value-at-Risk forecasting
methods for the individual components of S&P500.

We consider log returns for the S&P 500 components, from
01/01/2000 to 01/01/2019.

VaR forecasts are constructed using Rolling Window, GARCH,
TARCH and Factor GARCH.

We take 25% of the available observations for each stock as the in
sample period. We re-estimate the volatility parameters once per year
out of sample.

We construct quantile forecasts by means of Filtered Historical
Simulation (Barone-Adesi, Engle, and Mancini (2008))
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Empirical Application: Results

Factor GARCH TARCH GARCH Rolling Window

Average Hits(%) 4.796 5.015 4.954 5.138
Average Length 2.982 2.898 2.914 3.099

UC(1%) 93.8% 98.4% 98.2% 89.4%
CC(1%) 85.2% 93.1% 87.4% 20.4%
DQ(1%) 74.5% 75.8% 63.4% 7.30%

τ ˆ 100 (Note: α2 ˆ 100 “ 0.25) 0.807 0.876 0.901 1.212
Loss 17.604 19.152 19.484 27.852

Since ELm ď αp1´ αq, we report Lossm “
Lm

αp1´αq
ˆ 100
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Empirical Application: Figures
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Empirical Application: Figures
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Conclusion

Summary

We introduce a criteria to evaluate multiple interval forecasts

We propose to rank methods according to the dependence properties
of the collection of hit series

We apply our framework to evaluate methods to construct VaR
forecasts for each of the S&P500 stocks

Methods that incorporate the factor structure of volatility reduce the
dependence across VaR hits, performing better according to the
proposed metric.
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Appendix

Empirical Application: Figures
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Appendix

Empirical Application: Additional Table

Factor GARCH TARCH GARCH Rolling Window

Loss 20.940 22.553 22.854 34.180

Average Hits(%) 5.005 5.186 5.116 5.662
τ 0.907 0.971 0.996 1.395

UC(10%) 1 0.997 1 0.914
CC(1%) 0.830 0.894 0.769 0.058
Length 2.920 2.846 2.862 3.030
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